Intro to C++

* Just like Java... except for...
* Full read/write access to memory pointers and references
* Java only allows re-assignment

* Manual memory allocation/deallocation
* i.e. no garbage collection

* Compilation directly to machine code

e Different built-in libraries (of course)

* Interfaces don’t exist — multiple inheritance of classes
* “virtual” classes can serve as interfaces

* Where Java passes primitives by value and objects by
reference, in C++ you get to choose

Pointers

MAN, | S5UCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

Ox3A28213A
Ox6339292C,

Ox 7363682E.

| HATE YOU.

Y

Pointers

* A pointer variable is a variable that stores the memory
address where another object resides. It points to a memory
location

e Used as fundamental tool in many data structures. Why are
pointers useful?

* Many reasons! Most notably:
* Dynamic-sized structures
* Lower memory overhead from function arguments
* Non-contiguous data representations (e.g. linked-list)

Memory Address vs. Value Stored

* Consider memory to be a single huge array:
* FEach cell of the array has an address associated with it.
* Each cell also stores some value.

* Don’t confuse the address referring to a memory
location with the value stored 1n that location.

101 102 103 104 105 ...
23 42

C++ pointer syntax

Declaration:

* <variable name>;

Examples:

* counter;
* dogs; (where dogs 1s an array of Dogs)

Why does the need to be there?

We can access the data directly from the pointer, and to do
that we need to know the size of the data it points to.

C++ pointer syntax

* As seen in pointer declaration, the “*’ on the left
side of the assignment means it is a pointer type

 However, when the “*’ is not in the declaration, it is
called the dereference operator, which returns the
data at the memory address that the pointer stores.

* Example:
* dogl;
dog2 = *dogl;

C++ pointer syntax

* &, the address-of operator: returns the virtual
memory address of any variable — the opposite of the
dereference operator

* Example:
int x = 5;
int * y = &x;
 We can use the dereference operator on the left
side to change values, like this:
*y += 2;
What are the values of x and *y ?

C++ pointer syntax

Initialization:

* <variable name> = & () variable;

Example: int blah = 5;
* counter;
counter = &blah;

- OR -

* <variable name> = ();

Example:
* dogl = (O; // calls the

// constructor for Dog

What'’s up with ?

* As you (hopefully) remember from Java, the ‘new’ keyword
is used to allocate memory

* In C++, ‘new’ returns the address-of the newly allocated
object — not the object itself

* Note: even though it is valid in C++, do NOT use ‘malloc’,
‘realloc’, or ‘calloc’ — these are for C code and ‘new’ is
used in C++

* The following are valid in C++:
« Dog dogl = Dog();
« Dog* dogptr = new Dog();

* The following are invalid in C++:
* Dog dogl = new Dog(); // valid in Java
« Dog* dogptr = Dog();

Memory Allocation

* Two ways:
* On the stack
* On the heap

e Reminder:

* The heap is not like the heap data structure: a collection
of memory blocks that may be fragmented (because of
manually deallocating memory)

* The stack is like the stack data structure: a LIFO structure
that stores the local variables, and no manual
deallocation is necessary

Memory Allocation (Stack)

int main(void) {
int x(5);
if (x> 3) {
int y(6);
cout << (X + y) << endl;
3
3

Memory Allocation (Heap)

int main(void) {
int *x = new 1nt(5);
if (*x > 3) {
int *y = new 1int(6);
cout << (*x + *y) << endl;
¥
¥

Memory De-allocation (Heap)

int main(void) {
int *x = new 1nt(5);
if (*x > 3) {
int *y = new 1int(6);
cout << (*x + *y) << endl;

h

delete x;

h

Array Allocation (Heap)

int main(void) {
int *x = new int[5];
*X = 5;
1f (*x > 3) {
int *y = new 1nt(6);
cout << (*x + *y) << endl;
delete y;

¥
delete [] x;

Functions

1(X)

Call-by-value

int sum (int x, int y) {
return x + y;

h

int main(void) {
cout << sum(5,6) << endl;

h

Still call-by-value

int sum (int* x, int* y) {
int sum = *x + *y;
*x += 5; // actually changes blahl to 10
X += 4; // these changes are not reflected
y -=7; // on the addresses passed
return sum;

¥

int main(){
int blahl = 5;
int blah2 = 7;
std: :cout << sum(&blahl,&lah2) << std::endl;

}

Call-by-reference

int sum(const int& x, const int& y) {
return x + y;

h

int main(void) {
int x (5);
int y (6);
cout << sum(x,y) << endl;

h

Question 1

What is the output from the following code:

double x = 5.5;
double *px = &x;
cout << *px << endl;
*px = 10.0;

cout << X << endl;

Kevin Corder

Question 1

What is the output from the following code:

double x = 5.5;
double *px = &x;
cout << *px << endl;
*px = 10.0;

cout << X << endl;

Question 2

What is the output from the following code:

double x = 5.5;

double y = 10.0;

double* px, py;

pX = &x;

py = &y;

cout << *px << endl << *py << endl;

// will not compile! py is actually a double, not
// a pointer so line 5 throws an error

Question 2

What is the output from the following code:

double x = 5.5;

double y = 10.0;

double* px, py;

pX = &x;

py = &y;

cout << *px << endl << *py << endl;

Kevin Corder

Question 3

What is the output from the following code:

double x = 5.5;
double *px = &x;
*px = 3.14;
double& r = *px;

r = 99.44;

cout << X << endl;

Kevin Corder

Question 3

What is the output from the following code:

double x = 5.5;
double *px = &x;
*px = 3.14;
double& r = *px;

r = 99.44;

cout << X << endl;

Lvalues and Rvalues

An is an expression that identifies a non-
temporary object

An is an expression that identifies a temporary
object, or a value not associated with any object

As examples, consider the following:

vector<string> arr(3);
const int x = 2;

lvalues:
int y; arr, str, arr[x], &x, v, z, ptr,
*ptr, (*ptr)[x]
int z = x + y; rvalues:
string str = "foo"; 2, "foo", x+y, str.substr(0,1)

vector<string> *ptr = &arr;

References

e A type allows us to define a new name for
an existing value; it’s an alias

— They even have the same memory address!

* Declared as: <type> & <name> = <var>;

— Normally the <var> needs to be an lvalue, but in C++11 we
can also have rvalue references.

— lvalue reference example:
int x = 5;1nt & y = X

— rvalue reference example:
int && y = 5;

Examples

string str = "hell";

string & rstr = str;

string & sub = str.substr(0, 3);
rstr += ’0’;
bool cond = (&str == &rstr);
string & badl = "hello";

string & bad2 = str + "";

string str = "hell";
string & & badl = "hello";
string & bad2 = str + "";
string & & sub = str.substr(0, 4);

When to use references and when to use
values in functions

* If the formal parameter should be able to change
the value of the actual argument, then you must use

call-by-reference

e Otherwise, the value of the actual argument cannot
be changed by the formal parameter
— If the type is a primitive type, use call-by-value

— Otherwise, the type is a class type and is generally passed
using call-by-constant-reference
* unless it’s an unusually small type (e.g., a type that
stores <= two primitives)

Rvalue usage example

// returns random item in lvalue arr
string randomItem(const vector<string> & arr);

// returns random item in rvalue arr
string randomItem(vector<string> && arr);

vector<string> v { "hello", "world" };

cout << randomItem(v) << endl; // call lvalue method
cout << randomItem({ "hi world" }) << endl; // call rvalue method

CISC220, Summer 2017 11

About const pointers

const is used to declare something as constant, but
becomes tricky in pointers

Is the pointer (memory location) constant, the value
it points to constant, or both?

The syntax is:

— <const for value> * <const for pointer> <name>;
— Examples:

e constint*x —or— intconst*x //these are the same!!
* int* const x;

e const int* const x;

* int const * x

Const pointer Examples

Syntax: <const for value> * <const for pointer> <name>;

Which lines are invalid in the following code?

int w,y,z; // 3 integers w, y, z
const int* x = &w;

*X += 2,

X += 2;

const int* const u = &y;
*u += 2;

u += 2;

int* const v = &z;

*v o += 2,

V += 2;

CISC220, Summer 2017

Kevin Corder

Kevin Corder

Kevin Corder

Const pointer Examples

Syntax: <const for value> * <const for pointer> <name>;

Which lines are invalid in the following code?

int w,y,z; // 3 integers w, y, z
const int* x = &w;

X += 2; // invalid, can't change w
X += 2;

const int* const u = &y;

*u += 2; // 1invalid, can't change y
u += 2; // invalid, can't change u
int* const v = &z;

*V o+= 2

Vo += 2; // invalid, can't change v

CISC220, Summer 2017

Structs

e Structs are combined data

e extremely common in C, also found in C++

struct Point {
float x;
float y;

}s

Classes

e Structs with methods! (sorta)

— Technically, structs can have methods—but structs are used as public
data wrappers by convention

* Syntaxis:
<class name> {
public:
. Member function declarations
private:

. Class variable definitions

b

* And initializing methods:

<return type> : :<function name>(...){

o

More pointer syntax

Dog {
public:
legs;

¥
Dog* lassie_ptr = new Dog();

* More convenient syntax for accessing object pointer
members:
legs = lassie_ptr->legs;

* |s equivalent to:
legs = (*lassie_ptr).legs;

Class Example with an ADT

* Normally in C++, collections of data that do not need
functions will be structs, and otherwise will be
classes

* An (ADT) is a combination of data

and operations

— Provides an interface for usage and encapsulates
implementation details

Class Diagram

| Shape 8
i Abstract Class
=) Methods
.Y area
public public
" Gircle @ | [Triangle &
Class Class
=P Shape =P Shape
=) Fields =) Fields
47 Center
47 Radius 4¥ Vertices
= Methods =) Methods
‘@ Circle ‘v area
‘v area ‘@ Triangle
‘¥ get_center
‘@ get_radius
‘¥ set_center
‘¥ set_radius
\. y,

Point
Struct

= Fields
v X
v Yy
=) Methods
‘¥ Point

CISC220, Summer 2017

18

ADT for Collections of Data

class Data {
public:
/**
* Returns @ if equal to other, -1 if < other, 1 if > other
*/
virtual int compareTo(Data * other) const = 0;
// ...

s
class IntegerData : public Data {
public:
int value;
// ...
int compareTo(Data * other) const ...
s

The “public Data” means the inheritance is public; see:
http://stackoverflow.com/questions/860339/difference-between-

private-public-and-protected-inheritance

CISC220, Summer 2017

19

Collection

e add(x)
* remove(x)
* member(x)

e size()

We'll implement with a fixed-length array:

ArrayCollection

class ArrayCollection {
public:
void add(Data*);
volid remove(Data*);
bool member(Data*);
int size();

private:
Data* data;
int nextPos;
int arraySize;

b

CISC220, Summer 2017

21

ArrayCollection

void ArrayCollection::add(Data* d){
1f (nextPos < arraySize) {
data[nextPos++] = *d;
} else {

}
}
void ArrayCollection: :remove(Data* d){
bool found = false;
for (int 1 = 0; 1 < nextPos; ++1){
if ((data+i) == d || found) {
found = true;
data[1] = data[i+1];
}
by
1f (found) {
delete data[--nextPos];
¥

ArrayCollection

bool member(Data* d){
for (int 1 = 0; 1 < nextPos; ++1){
1f ('data[1].compareTo(d)){
return true;
ks

¥

return false;

¥

int size(){
return nextPos;

Lists

If these methods define a Collection:
e add(x)

* remove(x)

* member(x)

* size()

what is a List?

Lists

e add(x)

* insert(i, x)
* get(i)

* remove(x)
* remove(i)
* member(x)
e size()

where x is a value and i is an index

Our LinkedList data structure will use these methods!

Virtual Memory

Basic abstraction provided by OS for memory
management

Enables programs to run without requiring entire address
space to be in physical memory

Most programs do not use all of their code or data

— E.g. branches never taken, variables never accessed, objects
never created

— Therefore no need to allocate memory until it’s needed

Also isolates processes from each other

— Each process gets its own virtual memory space, usually about 4
GB

— One process cannot access memory addresses in others

c A

access its own memory

Virtual Addresses

is @ memory address that a process uses to

— Which is not the same as the address on physical memory

— The OS determines the mapping from virtual address to physical

address

OXFFFFFFFF
A

Address space

How many values
can be represented
in this space? --->
168 = 4,294,967,296

\/
0x00000000

(Reserved for OS)

Stack

Y
A

Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment)

Code
(text segment)

CISC220, Summer 2017

<— Stack pointer

<— Program counter

27

Virtual Addresses

We've mentioned Stacks (LIFO) and the Heap already (contiguous block of allocated objects

that may be fragmented)

BSS: contains the statically-allocated and uninitialized variables

— Data bits allsetto 0
Data: initialized static variables (including globals)
Virtual addresses allow relocation

— A process does not (and should not) OxFEEFEEFE
know the physical address that it A
uses to run

Address space

\J
0x00000000

CISC220, Summer 2017

(Reserved for OS)

Stack

v
A

Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment)

Code
(text segment)

<— Stack pointer

<— Program counter

28

Question 4

What is the output from the following code:

void swap(int x, int y) {
int temp = Xx;
X =Y,
y = temp;

}

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

Kevin Corder

Question 4

What is the output from the following code:

void swap(int x, int y) {
int temp = Xx;
X =Y,
y = temp;

}

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

Question 5

Change the code to work correctly using references:

void swap(int x, int y) {
int temp = Xx;
X =Y,
y = temp;

}

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

}

Kevin Corder

Question 5

Change the code to work correctly using references:

void swap(int x, int y) {
int temp = Xx;
X =Y,
y = temp;

}

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

}

Question 6

What is the value of temp after each assignment?

char blocks[3] = {'A','B','C'};
char *ptr = &blocks[0];

char temp;

/*¥1*/ temp = blocks[@];

/*¥2*%/ temp = *(blocks + 2);

/*¥3*/ temp = *(ptr + 1);
ptr = blocks + 1;

/*4*/ temp = *ptr;

/*¥5*/ temp = *(ptr + 1);

Kevin Corder

Question 6

What is the value of temp after each assignment?

char blocks[3] = {'A','B','C'};
char *ptr = &blocks[0];

char temp;

/*¥1*/ temp = blocks[@];

/*¥2*%/ temp = *(blocks + 2);

/*¥3*/ temp = *(ptr + 1);
ptr = blocks + 1;

/*4*/ temp = *ptr;

/*¥5*/ temp = *(ptr + 1);

Question 7/

What is the value of temp after each assignment?

char blocks[3] = {'A','B','C'};
char *ptr = blocks;
char temp;

/¥1*¥/ temp = *++ptr;

/*¥2*%/ temp = ++*ptr;
/*3*%/ temp = *ptr++;
/*4*%/ temp = *ptr;

Kevin Corder

Question 7/

What is the value of temp after each assignment?

char blocks[3] = {'A','B','C'};
char *ptr = blocks;
char temp;

/¥1*¥/ temp = *++ptr;

/*¥2*%/ temp = ++*ptr;
/*3*%/ temp = *ptr++;
/*4*%/ temp = *ptr;

Before next class

e Review today’s slides

* Read the following resources:

— http://pages.cs.wisc.edu/~hasti/cs368/CppTutorial/NOTES
/INTRODUCTION.html

— http://www.cplusplus.com/doc/tutorial/pointers/

— http://www.cplusplus.com/doc/tutorial/dynamic/

CISC220, Summer 2017 47

