
Intro	to	C++

• Just	like	Java...	except	for...
• Full	read/write	access	to	memory	pointers	and	references
• Java	only	allows	re-assignment

•Manual	memory	allocation/deallocation
• i.e.	no	garbage	collection	

• Compilation	directly	to	machine	code
• Different	built-in	libraries	(of	course)
• Interfaces	don’t	exist	– multiple	inheritance	of	classes
• �virtual� classes	can	serve	as	interfaces

•Where	Java	passes	primitives	by	value	and	objects	by	
reference,	in	C++	you	get	to	choose

Pointers

Pointers

• A	pointer	variable is	a	variable	that	stores	the	memory	
address	where	another	object	resides.	It	points to	a	memory	
location

• Used	as	fundamental	tool	in	many	data	structures.	Why	are	
pointers	useful?	

•Many	reasons!	Most	notably:	
• Dynamic-sized	structures
• Lower	memory	overhead	from	function	arguments
• Non-contiguous	data	representations	(e.g.	linked-list)	

Memory	Address	vs.	Value	Stored

• Consider memory to be a single huge array:
• Each cell of the array has an address associated with it.
• Each cell also stores some value.

• Don’t confuse the address referring to a memory
location with the value stored in that location.

23 42 101 102 103 104 105 ...

C++	pointer	syntax

Declaration:	
<type>	*	<variable	name>;
Examples:	

int* counter;
Dog* dogs; (where dogs is an array of Dogs)

Why	does	the	<type> need	to	be	there?	
We	can	access	the	data	directly	from	the	pointer,	and	to	do	
that	we	need	to	know	the	size	of	the	data	it	points	to.	

C++	pointer	syntax

•As	seen	in	pointer	declaration,	the	‘*’	on	the	left	
side	of	the	assignment	means	it	is	a	pointer	type
•However,	when	the	‘*’	is	not	in	the	declaration,	it	is	
called	the	dereference	operator,	which	returns	the	
data	at	the	memory	address	that	the	pointer	stores.	
• Example:	

Dog*	dog1;
Dog	dog2	=	*dog1;	

C++	pointer	syntax

•&,	the	address-of	operator:	returns	the	virtual	
memory	address	of	any	variable	– the	opposite	of	the	
dereference	operator	
• Example:	

int x = 5;
int * y = &x;

• We	can	use	the	dereference	operator	on	the	left	
side	to	change	values,	like	this:	
*y += 2;

What	are	the	values	of	x	and	*y	?	

C++	pointer	syntax

Initialization:	
<type>	*	<variable	name> =	&	(<type>)	variable;
Example:	int blah = 5;

int* counter;
counter = &blah;

- OR -

<type>	*	<variable	name> =	new	<type>();
Example:	
Dog * dog1 = new Dog(); // calls the

// constructor for Dog

What’s	up	with	new?	

• As	you	(hopefully)	remember	from	Java,	the	‘new’	keyword	
is	used	to	allocate	memory
• In	C++,	‘new’	returns	the	address-of	the	newly	allocated	
object	— not	the	object	itself	
• Note:	even	though	it	is	valid	in	C++,	do	NOT use	‘malloc’,	
‘realloc’,	or	‘calloc’	– these	are	for	C	code	and	‘new’	is	
used	in	C++

• The	following	are	valid in	C++:	
• Dog dog1 = Dog();
• Dog* dogptr = new Dog();

• The	following	are	invalid in	C++:	
• Dog dog1 = new Dog(); // valid in Java
• Dog* dogptr = Dog();

Memory	Allocation

•Two	ways:
• On	the	stack
• On	the	heap	

•Reminder:	
• The	heap	is	not	like	the	heap	data	structure:	a	collection	
of	memory	blocks	that	may	be	fragmented	(because	of	
manually	deallocating memory)
• The	stack	is like	the	stack	data	structure:	a	LIFO	structure	
that	stores	the	local	variables,	and	no	manual	
deallocation is	necessary

Memory	Allocation	(Stack)	

int main(void) {
int x(5);
if (x > 3) {
int y(6);
cout << (x + y) << endl;

}
}

Memory	Allocation	(Heap)	

int main(void) {
int *x = new int(5);
if (*x > 3) {
int *y = new int(6);
cout << (*x + *y) << endl;

}
}

Memory	De-allocation	(Heap)	

int main(void) {
int *x = new int(5);
if (*x > 3) {
int *y = new int(6);
cout << (*x + *y) << endl;
delete y;

}
delete x;

}

Array	Allocation	(Heap)		

int main(void) {
int *x = new int[5];
*x = 5;
if (*x > 3) {
int *y = new int(6);
cout << (*x + *y) << endl;
delete y;

}
delete [] x;

}

Functions

fx f(x)

Call-by-value

int sum (int x, int y) {
return x + y;

}

int main(void) {
cout << sum(5,6) << endl;

}

Still	call-by-value

int sum (int* x, int* y) {
int sum = *x + *y;
*x += 5; // actually changes blah1 to 10
x += 4; // these changes are not reflected
y -= 7; // on the addresses passed

return sum;
}

int main(){
int blah1 = 5;
int blah2 = 7;
std::cout << sum(&blah1,&blah2) << std::endl;

}

Call-by-reference

int sum(const int& x, const int& y) {
return x + y;

}

int main(void) {
int x (5);
int y (6);
cout << sum(x,y) << endl;

}

Question	1

What	is	the	output	from	the	following	code:	

double x = 5.5;
double *px = &x;
cout << *px << endl;
*px = 10.0;
cout << x << endl;

// 5.5
// 10

Kevin Corder

Question	1

What	is	the	output	from	the	following	code:	

double x = 5.5;
double *px = &x;
cout << *px << endl;
*px = 10.0;
cout << x << endl;

// 5.5
// 10

Question	2

What	is	the	output	from	the	following	code:	

double x = 5.5;
double y = 10.0;
double* px, py;
px = &x;
py = &y;
cout << *px << endl << *py << endl;

// will not compile! py is actually a double, not
// a pointer so line 5 throws an error

Question	2

What	is	the	output	from	the	following	code:	

double x = 5.5;
double y = 10.0;
double* px, py;
px = &x;
py = &y;
cout << *px << endl << *py << endl;

// will not compile! py is actually a double, not
// a pointer so line 5 throws an error

Kevin Corder

Question	3

What	is	the	output	from	the	following	code:	

double x = 5.5;
double *px = &x;
*px = 3.14;
double& r = *px;
r = 99.44;
cout << x << endl;

// 99.4

Kevin Corder

Question	3

What	is	the	output	from	the	following	code:	

double x = 5.5;
double *px = &x;
*px = 3.14;
double& r = *px;
r = 99.44;
cout << x << endl;

// 99.4

Lvalues and	Rvalues

• An	lvalue is	an	expression	that	identifies	a	non-

temporary	object	

• An	rvalue is	an	expression	that	identifies	a	temporary	

object,	or	a	value	not	associated	with	any	object

• As	examples,	consider	the	following:	
vector<string> arr(3);
const int x = 2;
int y;
...

int z = x + y;
string str = "foo";
vector<string> *ptr = &arr;

CISC220,	Summer	2017 7

lvalues:

arr,	str,	arr[x],	&x,	y,	z,	ptr,	

*ptr,	(*ptr)[x]	

rvalues:

2,	"foo",	x+y,	str.substr(0,1)	

References

• A	reference type	allows	us	to	define	a	new	name	for	

an	existing	value;	it’s	an	alias
– They	even	have	the	same	memory	address!	

• Declared	as:		<type>	&	<name>	=	<var>;

– Normally	the	<var>	needs	to	be	an	lvalue,	but	in	C++11	we	
can	also	have	rvalue references.	

– lvalue reference	example:	

int x = 5;int & y = x
– rvalue reference	example:

int && y = 5;
// note the extra ‘&’ !

CISC220,	Summer	2017 8

Examples

string str = "hell";
string & rstr = str;
string & sub = str.substr(0, 3);
rstr += ’o’; // change string to “hello”
bool cond = (&str == &rstr);
string & bad1 = "hello";
string & bad2 = str + "";

string str = "hell"; // change back to “hell”
string && bad1 = "hello";
string && bad2 = str + "";
string && sub = str.substr(0, 4);

CISC220,	Summer	2017 9

//legal
//illegal

// legal (true)
// illegal
// illegal

// legal
// legal
// legal

When	to	use	references	and	when	to	use	

values	in	functions

• If		the	formal	parameter	should	be	able	to	change	

the	value	of	the	actual	argument,	then	you	must	use	
call-by-reference

• Otherwise,	the	value	of	the	actual	argument	cannot	

be	changed	by	the	formal	parameter

– If	the	type	is	a	primitive	type,	use	call-by-value

– Otherwise,	the	type	is	a	class	type	and	is	generally	passed	

using	call-by-constant-reference	

*	unless	it’s	an	unusually	small	type	(e.g.,	a	type	that	

stores	<=	two	primitives)	

CISC220,	Summer	2017 10

Rvalue usage	example

// returns random item in lvalue arr
string randomItem(const vector<string> & arr);
// returns random item in rvalue arr
string randomItem(vector<string> && arr);

vector<string> v { "hello", "world" };
cout << randomItem(v) << endl; // call lvalue method
cout << randomItem({ "hi world" }) << endl; // call rvalue method

CISC220,	Summer	2017 11

About	const pointers

• const is	used	to	declare	something	as	constant,	but	

becomes	tricky	in	pointers

• Is	the	pointer	(memory	location)	constant,	the	value	

it	points	to	constant,	or	both?	

• The	syntax	is:	

– <const for	value> <type>* <const for	pointer>	<name>;

– Examples:	

• const int*	x						–or– int const *	x			 //	these	are	the	same!!

• int*	const x;	

• const int*	const x;	

• int const *	x

CISC220,	Summer	2017 12

Const pointer	Examples

Syntax:	<const for value> <type>* <const for pointer> <name>;

Which	lines	are	invalid	in	the	following	code?	

int w,y,z;
const int* x = &w;
*x += 2;
x += 2;
const int* const u = &y;
*u += 2;
u += 2;
int* const v = &z;
*v += 2;
v += 2;

CISC220,	Summer	2017 13

// 3 integers w, y, z

// invalid, can't change w

// invalid, can't change y
// invalid, can't change u

// invalid, can't change v

Kevin Corder

Kevin Corder

Kevin Corder

Const pointer	Examples

Syntax:	<const for value> <type>* <const for pointer> <name>;

Which	lines	are	invalid	in	the	following	code?	

int w,y,z;
const int* x = &w;
*x += 2;
x += 2;
const int* const u = &y;
*u += 2;
u += 2;
int* const v = &z;
*v += 2;
v += 2;

CISC220,	Summer	2017 13

// 3 integers w, y, z

// invalid, can't change w

// invalid, can't change y
// invalid, can't change u

// invalid, can't change v

Structs

• Structs are	combined	data	

• extremely	common	in	C,	also	found	in	C++

struct Point {
float x;
float y;

};

CISC220,	Summer	2017 14

Classes

• Structs with	methods!	(sorta)	

– Technically,	structs can	have	methods—but	structs are	used	as	public	
data	wrappers	by	convention	

• Syntax	is:	

class <class name> {
public:
... Member function declarations
private:
... Class variable definitions
}; // the ‘;’ is needed because a class declaration
// is a statement – all statements end with ;

• And	initializing	methods:	

<return type> <Class Name>::<function name>(...){
...

}

CISC220,	Summer	2017 15

More	pointer	syntax

class Dog {
public:

int legs;
}
Dog* lassie_ptr = new Dog();

• More	convenient	syntax	for	accessing	object	pointer	

members:	

int legs = lassie_ptr->legs;

• Is	equivalent	to:	

int legs = (*lassie_ptr).legs;

CISC220,	Summer	2017 16

Class	Example	with	an	ADT

• Normally	in	C++,	collections	of	data	that	do	not	need	

functions	will	be	structs,	and	otherwise	will	be	

classes

• An	Abstract	Data	Type (ADT)	is	a	combination	of	data	

and	operations

– Provides	an	interface	for	usage	and	encapsulates	
implementation details	

CISC220,	Summer	2017 17

Class	Diagram	

CISC220,	Summer	2017 18

ADT	for	Collections	of	Data	

class Data {
public:
/**
* Returns 0 if equal to other, -1 if < other, 1 if > other
*/
virtual int compareTo(Data * other) const = 0;
// ...

};

class IntegerData : public Data {
public:
int value;
// ...
int compareTo(Data * other) const ...

};

The “public Data” means the inheritance is public; see:
http://stackoverflow.com/questions/860339/difference-between-
private-public-and-protected-inheritance

CISC220,	Summer	2017 19

Collection

• add(x)

• remove(x)

• member(x)

• size()

We’ll	implement	with	a	fixed-length	array:	

CISC220,	Summer	2017 20

ArrayCollection

class ArrayCollection {
public:

void add(Data*);
void remove(Data*);
bool member(Data*);
int size();

private:
Data* data;
int nextPos;
int arraySize;

};

CISC220,	Summer	2017 21

ArrayCollection

void ArrayCollection::add(Data* d){
if (nextPos < arraySize) {

data[nextPos++] = *d;
} else {

// throw error
}

}
void ArrayCollection::remove(Data* d){

bool found = false;
for (int i = 0; i < nextPos; ++i){

if ((data+i) == d || found) {
found = true; // copy elements to location
data[i] = data[i+1]; // one cell to left

}
}
if (found) {

delete data[--nextPos]; // delete memory
}

}

CISC220,	Summer	2017 22

ArrayCollection

bool member(Data* d){
for (int i = 0; i < nextPos; ++i){

if (!data[i].compareTo(d)){ // compareTo is 0
return true;

}
}
return false;

}

int size(){
return nextPos;
// this extra
// space is
// to trick
// you >:)

}

CISC220,	Summer	2017 23

Lists	

If	these	methods	define	a	Collection:

• add(x)

• remove(x)

• member(x)

• size()

what	is	a	List?

CISC220,	Summer	2017 24

Lists	

• add(x)

• insert(i,	x)

• get(i)

• remove(x)

• remove(i)

• member(x)

• size()

where	x	is	a	value	and	i is	an	index

Our	LinkedList data	structure	will	use	these	methods!	

CISC220,	Summer	2017 25

Virtual	Memory

• Basic	abstraction	provided	by	OS	for	memory	

management	

• Enables	programs	to	run	without	requiring	entire	address	

space	to	be	in	physical	memory

• Most	programs	do	not	use	all	of	their	code	or	data

– E.g.	branches	never	taken,	variables	never	accessed,	objects	

never	created	

– Therefore	no	need	to	allocate	memory	until	it’s	needed

• Also	isolates	processes	from	each	other

– Each	process	gets	its	own	virtual	memory	space,	usually	about	4	

GB	

– One	process	cannot	access	memory	addresses	in	others

CISC220,	Summer	2017 26

Virtual	Addresses

• A	virtual	address is	a	memory	address	that	a	process	uses	to	

access	its	own	memory

– Which	is	not the	same	as	the	address	on	physical	memory

– The	OS	determines	the	mapping	from	virtual	address	to	physical	

address	

CISC220,	Summer	2017 27

How	many	values	

can	be	represented	

in	this	space?			--->

168 =	4,294,967,296

Virtual	Addresses

• We’ve	mentioned	Stacks	(LIFO)	and	the	Heap	already	(contiguous	block	of	allocated	objects	

that	may	be	fragmented)	

• BSS:	contains	the	statically-allocated	and	uninitialized	variables	
– Data	bits	all	set	to	0	

• Data:	initialized	static	variables	(including	globals)	
• Virtual	addresses	allow	relocation

– A	process	does	not	(and	should	not)	

know	the	physical	address	that	it	

uses	to	run	

CISC220,	Summer	2017 28

Question	4

What	is	the	output	from	the	following	code:	

void swap(int x, int y) {
int temp = x;
x = y;
y = temp;

}

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

}

// 0

CISC220,	Summer	2017 43

Kevin Corder

Question	4

What	is	the	output	from	the	following	code:	

void swap(int x, int y) {
int temp = x;
x = y;
y = temp;

}

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

}

// 0

CISC220,	Summer	2017 43

Question	5

Change	the	code	to	work	correctly	using	references:	

void swap(int x, int y) {
int temp = x;
x = y;
y = temp;

}
// change to swap(int& x, int& y)

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

}

CISC220,	Summer	2017 44

Kevin Corder

Question	5

Change	the	code	to	work	correctly	using	references:	

void swap(int x, int y) {
int temp = x;
x = y;
y = temp;

}
// change to swap(int& x, int& y)

int main(void) {
int a = 0;
int b = 5;
swap(a,b);
cout << a << endl;

}

CISC220,	Summer	2017 44

Question	6

What	is	the	value	of	temp	after	each	assignment?

char blocks[3] = {'A','B','C'};
char *ptr = &blocks[0];
char temp;

/*1*/ temp = blocks[0];
/*2*/ temp = *(blocks + 2);
/*3*/ temp = *(ptr + 1);

ptr = blocks + 1;
/*4*/ temp = *ptr;
/*5*/ temp = *(ptr + 1);

// ‘A’, ‘C’, ‘B’, ‘B’, ‘C’

CISC220,	Summer	2017 45

Kevin Corder

Question	6

What	is	the	value	of	temp	after	each	assignment?

char blocks[3] = {'A','B','C'};
char *ptr = &blocks[0];
char temp;

/*1*/ temp = blocks[0];
/*2*/ temp = *(blocks + 2);
/*3*/ temp = *(ptr + 1);

ptr = blocks + 1;
/*4*/ temp = *ptr;
/*5*/ temp = *(ptr + 1);

// ‘A’, ‘C’, ‘B’, ‘B’, ‘C’

CISC220,	Summer	2017 45

Question	7

What	is	the	value	of	temp	after	each	assignment?

char blocks[3] = {'A','B','C'};
char *ptr = blocks;
char temp;

/*1*/ temp = *++ptr;
/*2*/ temp = ++*ptr;
/*3*/ temp = *ptr++;
/*4*/ temp = *ptr;

1. ‘B’:	ptr gets	incremented	first,	then	dereference.	Ptr
now	at	B.	

2. ‘C’:	Dereference	to	get	‘B’	then	increment,	so	char	
value	of	’B’	+	1	=	‘C’.	Ptr still	at	2nd position,	but	
array	changed so	is	now	{‘A’,’C’,’C’}.	

3. ‘C’:	++	has	higher	precedence	but	evaluates	at	end	
of	expression	(postfix),	so	dereference	current	
position	(blocks[1])	to	return	‘C’	and	ptr ends	up	
pointing	to	blocks[2],	which	is	also	‘C’.	

4. ‘C’:	return	value	at	ptr,	which	is	‘C’.	

CISC220,	Summer	2017 46

Kevin Corder

Question	7

What	is	the	value	of	temp	after	each	assignment?

char blocks[3] = {'A','B','C'};
char *ptr = blocks;
char temp;

/*1*/ temp = *++ptr;
/*2*/ temp = ++*ptr;
/*3*/ temp = *ptr++;
/*4*/ temp = *ptr;

1. ‘B’:	ptr gets	incremented	first,	then	dereference.	Ptr
now	at	B.	

2. ‘C’:	Dereference	to	get	‘B’	then	increment,	so	char	
value	of	’B’	+	1	=	‘C’.	Ptr still	at	2nd position,	but	
array	changed so	is	now	{‘A’,’C’,’C’}.	

3. ‘C’:	++	has	higher	precedence	but	evaluates	at	end	
of	expression	(postfix),	so	dereference	current	
position	(blocks[1])	to	return	‘C’	and	ptr ends	up	
pointing	to	blocks[2],	which	is	also	‘C’.	

4. ‘C’:	return	value	at	ptr,	which	is	‘C’.	

CISC220,	Summer	2017 46

Before	next	class

• Review	today’s	slides

• Read	the	following	resources:	

– http://pages.cs.wisc.edu/~hasti/cs368/CppTutorial/NOTES

/INTRODUCTION.html

– http://www.cplusplus.com/doc/tutorial/pointers/

– http://www.cplusplus.com/doc/tutorial/dynamic/

CISC220,	Summer	2017 47

